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ABSTRACT 

GIS data distributed in local, state, federal, and private data 
clearinghouses are being made accessible through the efforts of 
organizations such as Federal Geographic Data Committee 
(FGDC) and GeoData.gov. Many database applications, such as 
disaster management, transportation, and national infrastructure 
protection, need to access GIS information from such various data 
sources. In this paper we study how to answer keyword-based 
spatial queries approximately using information from 
heterogeneous GIS sources.  An example query specifies the 
region of Orange County and keywords “junior schools,” 
which asks for geospatial objects relevant to junior schools in 
Orange County. The answers to such a query provided by 
different sources differ widely in their content and quality. It is 
computationally expensive to access all the datasets to retrieve all 
the relevant objects. We develop approximate algorithms for 
answering such queries based on the local analysis of the query 
region using space-partitioning techniques. Our methods rank 
datasets in a partition based on parameters such as their spatial 
coverage and content matching the query keywords.  The quality 
of the answers keeps improving progressively as we do deeper 
local analysis. We develop an efficient traversal strategy to 
maximize the quality refinement within a given time limit.  We 
conducted experiments to evaluate the proposed techniques. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – spatial 
databases and GIS.  

General Terms 
Algorithms, Management 

Keywords 
GIS data integration, approximate methods, heterogeneous data 
sources. 

1. INTRODUCTION 
Many applications such as emergency management, 
environmental analysis, and national infrastructure protection 
need to access GIS information for various kinds of analyses. For 
instance, during emergency situations [20], it is critical to provide 
the first responders quick access to GIS data to do damage 
assessment and make critical decisions, so that they can dispatch 
resources to save lives and properties. Often the GIS information 
comes from autonomous, heterogeneous sources, such as local, 
state, federal, and private agencies. These datasets are stored and 
maintained at different hierarchies of administrative jurisdictions. 
The commercial value of these datasets has also prompted various 
private agencies to produce datasets of their own. All these 
organizations provide access to datasets through their data-
clearing houses. Therefore, it is becoming increasingly important 
to support seamless access to GIS information from these 
heterogeneous sources. A recent report on the World Trade Center 
attacks [19] has highlighted the need to integrate datasets across 
multiple jurisdictions. Recently, there has been multitude of 
efforts, such as the Federal Geographic Data Committee (FGDC) 
and GeoData.gov, to connect all the clearinghouses, so that users 
can have single access point to GIS data [8, 10]. 

One main challenge in integrating GIS data is the heterogeneity of 
different sources. Data integration problem has been studied from 
the perspective of how to resolve the schematic and semantic 
differences between heterogeneous data sources, mapping 
different schemas, and providing query interfaces for integrated 
access [4, 7, 9]. The adoption of GIS metadata standards solves 
the heterogeneity problem to some extent. The metadata provides 
information such as theme keywords, spatial bounding 
coordinates, and spatial references. We could utilize such 
metadata to deal with heterogeneity of the datasets as follows. 
When a user specifies a query (e.g., a few keywords and a 
bounding box) that asks for certain GIS information, we can rank 
these datasets based on their metadata, and return those that are 
ranked the highest. The user can then browse the data in these 
returned datasets to find the information. This metadata-based 
approach is adopted by organizations such as GeoData.gov. While 
this approach has the advantage of finding relevant datasets for a 
query, it also has limitations. First, without looking the real data 
in each dataset, a ranking of the datasets based on their metadata 
only might not be accurate. Secondly, the top ranked datasets 
could provide redundant information for the same region. For 
instance, there can be many data sets that provide information 
about hospitals in Orange County. Given a list of (top ranked) 
datasets, the user could be overwhelmed by the large amount of 
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information: she has to go through the dataset list, retrieve the 
data from each of them, and manually integrate the data. This 
process is very tedious and time consuming. Therefore, it is more 
desirable to provide one integrated result from these datasets. 

In this paper we study how to integrate GIS information by 
supporting keyword queries on heterogeneous data sources. We 
consider the case where a user issues a query that consists of a 
geospatial region and a few keywords. An example query 
specifies the region of Orange County and keywords “junior 
schools.” Intuitively, this query asks for geospatial objects that 
are in Orange County, and relevant to junior schools. Our goal is 
to retrieve such objects from the different datasets. One main 
advantage of supporting information retrieval (IR) style keyword 
search is that the user does not need to know the structure of the 
data at a source.  One naïve approach to answering such a query is 
to retrieve all the objects from the datasets, and find those that are 
relevant to the query. This approach is impractical when it is 
expensive to go through these objects, especially when the 
datasets reside at remote sources.  

In this paper we propose a novel technique to answer GIS 
keyword queries. The main idea is the following. Given a query, 
we rank the datasets from different data sources approximately 
based on their sample objects and relevance to the query. We 
choose the best data source, and retrieve its relevant objects as an 
approximate answer to the query. If the user is satisfied with the 
quality of these objects, there is no need to access more data 
sources. Otherwise, we need to further improve the quality of the 
current answer by partitioning the query region into subregions, 
and finding the best data source for each of them. We repeat this 
process until the user is satisfied with the quality of the final 
answer. In this way, our technique can compute an approximate 
answer to the query, and the quality of the answer improves 
progressively as we do deeper local analysis. We develop an 
efficient traversal algorithm to maximize the quality refinement 
within a given time limit.  We have conducted experiments to 
evaluate the effectiveness of the proposed technique. 

The remainder of the paper is organized as follows. In Section 2 
we motivate and formally define the problem with an example. In 
Section 3, we present our space-partitioning algorithm and 
explain how to rank the datasets. In Section 4, we discuss our 
progressive refinement algorithms for efficient traversal of space 
partitions. We present the experimental results in Section 5. We 
discuss some related work in Section 6 and conclude in Section 7. 

2. PROBLEM DEFINITION 
In this section we use an example to motivate our work and 
formally define the studied problem. 

EXAMPLE 2.1 Geospatial one-stops such as GeoData.gov or 
fgdc.gov provide access to GIS datasets through their metadata 
query interfaces. Their interface allows users to specify query 
parameters such as spatial region (where), theme keywords 
(what), and time (when).  The query is matched against the 
metadata present in the underlying distributed catalog servers that 
index metadata, and retrieves maps, documents, downloadable 
datasets, etc. The downloadable datasets come as vector, raster, 
and digital line graphics (DLG) along with the metadata.  

We are given a set of GIS datasets that reside at different sources. 
We consider queries specified in the following format: 

(q, <w1,…,wp>), 
in which q is a spatial region, and w1,…,wp are keywords. An 
example is: 

(Region of Orange County, ‘junior schools’), 
which, intuitively, asks for geospatial objects in Orange County 
that are relevant to junior schools. For simplicity, we assume the 
spatial region is a bounding box. The keywords specify theme or 
other sub-categories of a theme that the user is interested in. 
Given this query, we want to compute one integrated result that 
combines the best matching portions from the relevant datasets in 
different spatial regions of the query. We focus on vector data that 
mainly stores geometric elements and their attributes in a 
relational table. The main challenge to answer the query is how to 
compute its approximate answer quickly and efficiently. We 
address this challenge by proposing techniques that provide quick 
approximate answers by doing local spatial analysis and 
progressively refining the answer as we do deeper analysis. 

 

 

 

 

 

 

 

 

 

 

Hereafter when we refer to a data source, we mean its 
corresponding dataset relevant to queries. Let us assume that we 
have data sources d1,…,d5 that can answer the query q, as 
illustrated in Figure 1. Let the subscripts denote the ranking of the 
data sources according to some metadata ranking mechanism, and 
d1 ranks the highest. Traditional data integration techniques use 
the following two approaches to answering a query: (1) using all 
the sources or (2) using the best sources. There are limitations 
with both approaches. If the first approach is followed, there is a 
lot of overlap among the results from data sources d1, d2, and d3 
leading to redundant geospatial objects that represent the same 
real-world entity. It is difficult to identify such objects as they 
come from data sources that have different schemas, semantics, 
and data models. If the second approach is chosen, assuming that 
the system picks top three data sources, d1, d2, and d3, then there 
are contributions from other sources d4 and d5 in sub-query 
regions qa and qc that are not considered. This leads to inadequacy 
in spatial coverage of the query.  

Therefore, we need new techniques that can address these 
limitations. We address the redundancy problem by initially 
choosing only the data source that best matches the query. We 
address the spatial coverage problem by splitting the query region 
into sub-query regions, and further improving the quality of the 
answer, as requested by the user. In our example, initially d1 is the 
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d3 
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d1 

d4 
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Figure 1. Example problem. 
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best data source. But for the top portion of the sub-region qb, the 
contributions of d2 and d3 are better than that of d1.  

Now we formally define the GIS data integration problem studied 
in this work. Given a query (q, <w1,…,wp>) with matching set of 
data sources ),...,,( 21 ndddD = , integrate the results to produce a 
single dataset Dq, such that Dq contains the best contribution in 
terms of quality from all or subset of D, given as follows. 

nidD iq ≤≤= 1},{ , 

where ),...,,( 21 m
iiii dddd = is the set of geospatial objects from 

source di matching the query. The result set can be considered as 
a set of records in a relational table format. Each record j

id  in the 
result set has a spatial attribute (i.e., geometry) along with other 
attributes and m is the size of the result set. There are many 
parameters to measure the contributions of sources to the query, 
such as their spatial coverage, information content, accuracy, and 
currency. Some of these parameters are expressed in spatial 
metadata and used for ranking the datasets at the metadata level. 
In addition, we also consider the information content of geospatial 
objects present in each dataset that are relevant to the query. In 
this paper, we focus on spatial coverage and information content 
for evaluating a source’s contribution to a query. We formally 
define these parameters as follows. 
 
DEFINITION 2.1.  Given a region q, the spatial coverage of a 
data source di is defined as the fraction of di’s spatial region that 
falls within q, given as,  

)(
)(

qArea
qdArea i ∩ ,  

where the function Area(.) computes the area of a given region.  
 
DEFINITION 2.2. Given a region q, the information content of di 
is defined as a score that measures how much information di 
contributes in q with respect to the keywords in the query. The 
score is estimated based on an extended version of  tf-idf model 
used in information retrieval. We present the details of this model 
in Section 3.4. This information content is measured using a set of 
representative sample geospatial objects retrieved from di.  

3. APPROXIMATE METHODS 
In this section we discuss some naïve methods to solve the 
problem and present approximate methods using space 
partitioning techniques. 

3.1 NAÏVE SOLUTIONS 
An ideal condition of an integrated dataset is the one that has the 
maximum spatial coverage and maximum information content 
with the minimum redundancy. However, all of the criteria might 
not be satisfied simultaneously and hence, we need to weigh each 
criterion using user-defined weights. One naïve way of doing this 
is to take all the possible combinations of data sources. Then, we 
evaluate the information content and covered region for each 
combination and pick the best one using a weighted combination. 
This approach clearly is computationally expensive. Also, the 
combined datasets might overlap with each other and lead to a lot 
of redundancy in the output. Another way of doing this is to 
output all the relevant objects from the data sources satisfying the 
query. Again, the problem with this approach is that the output 
contains a lot of redundant objects. This information might be 

overwhelming for analysts to process, as in situations like crisis 
response, where time is a critical factor, this may not be 
acceptable. In addition, these methods cannot progressively refine 
the quality of integrated datasets. 

3.2 SPACE PARTITIONING TECHNIQUES 
If the user is not interested in an ideal output, and can tolerate 
certain error, we can use approximate methods to produce an 
integrated dataset. The idea is to trade off accurate and complete 
results for computational costs of performing the dataset 
integration and analysis overhead to identify the redundant 
objects. A number of approximate methods have been proposed in 
the literature based on multi-resolution data structures such as 
quadtrees, grids, and R-trees [12, 14, 16]. The main goal of these 
techniques is to provide approximate answers to a spatial range 
query with some quality guarantees. We use a similar idea of 
partitioning the query region into spaces. The main difference is 
that we employ this technique on the query region and not on the 
underlying data. The progressive partitioning of the query region 
refines the quality of the output dataset. 

3.3 VIRTUAL QUADS 
We propose an approximate technique that is based on the idea of 
partitioning the query region into virtual hierarchical quadrants. 
The reason for taking this space-partitioning technique is due to 
its simplicity and ease of maintenance. The idea of our approach 
is as follows: we start with the entire query region q as the root of 
a tree. We analyze a set of sampled geospatial objects from data 
sources that overlap with the root and pick the data source that 
best matches the query. The matching score of a data source is 
computed using scoring functions discussed in Section 3.4. The 
winning data source contributes to the overall approximate 
objects at the root compared to its counterparts, and the maximum 
spatial resolution is the root. On the other hand, as we go deeper 
into the tree, our analysis will pick contributions from other data 
sources as the spatial resolution increases, thus progressively 
improving the quality of the answer. 

In the example of Figure 2(a), before splitting the query region q 
into four quadrants q0, q1, q2, and q3, the overall winning data 
source is d2. After we split the quadrants shown in Figure 2(b), the 
overall winning data sources are d2 in q0, d1 in q1, d3 in q2, and d4 
in q3. The example scores of the winning data sources before and 
after splitting the query region into quadrants are given in Table 1 
and 2, respectively. The meaning of these scores and how we 
compute them are explained in Section 3.4. Now we show that 
after the split, the improvement in the quality of the resulting 
datasets does not decrease. 

THEOREM 1. The total score of the winning data sources in a 
quadrant’s children is always equal to or greater than the score of 
winning data source in the quadrant. 

PROOF. Let q
ad  be the winning data source in a quadrant q and 

its score be q
as .  Let q’s children be q0, q1, q2, and q3, and datasets 

0q
ld , 1q

md , 2q
nd , and 3q

od  be the winning datasets with scores 

0q
ls , 1q

ms , 2q
ns , and 3q

os , respectively. The winning data source in 
q’s children could be the same winning data source as in q. It is 
known that q

ad  must overlap with at least one and at most four of 
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q’s children. Let us assign scores for the overlapping portion 
of q

ad  with q’s children as 0q
as , 1q

as , 2q
as , and 3q

as . Note that if 
q
ad does not overlap with a q’s child, its score in that quadrant is 

0. We know that,  

q
a

q
a

q
a

q
a

q
a sssss =+++ 3210  

00 q
a

q
l ss ≥ ; 11 q

a
q
m ss ≥ ; 22 q

a
q
n ss ≥ ; 33 q

a
q
o ss ≥  

Form above equations it follows that q
a

q
o

q
n

q
m

q
l sssss ≥+++ 3210 . 
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Table 1. Scores of datasets before split. 

Dataset Spatial 
Coverage 

Info. 
Content 

Total 
Score 

d1 0.2 0.4 0.65 

d2 0.36 0.7 0.8 

d3 0.25 0.5 0.6 

d4 0.28 0.5 0.7 

 

Table 2. Scores of datasets after split. 

Dataset Spatial 
Coverage 

Info. 
Content 

Total 
Score 

 d1 0.01 0.1 0.1 

 d2 1 0.2 0.5 

Quadrant 0 

Dataset Spatial 
Coverage 

Info. 
Content 

Total 
Score 

 d1 0.75 0.3 0.55 

 d2 0.4 0.3 0.3 

Quadrant 1 

Dataset Spatial 
Coverage 

Info. 
Content 

Total 
Score 

d3 1 0.4 0.55 

d4 0.18 0.1 0.15 

Quadrant 2 

Dataset Spatial 
Coverage 

Info. 
Content 

Total 
Score 

d3 1 0.1 0.55 

d4 0.02 0.4 0.1 

Quadrant 3 

3.4 SCORING FUNCTIONS 
We rank each data source di in a quadrant based on scores of 
spatial coverage and information content of its sampled geospatial 
objects. While the score for spatial coverage c

di
s determines how 

much of a query region is covered by di, the score for information 
content ic

di
s captures how much of the query-specified keyword(s) 

are present in di. The importance of these two parameters is 
decided by the user and the scoring function is a weighted sum of 
the above scores. The following equation gives the scoring 
function for di. 

ic
dic

c
dcd iii

swsws .+⋅= , 

where wc and wic are user-defined weights. It is straightforward to 
compute c

di
s  (see Definition 2.1). To compute ic

di
s , we use IR 

techniques for relational tables.  

The goal is to find a score for di that measures the information 
content for keyword(s) <w1,…,wp> specified in the query. From 
the metadata information of di, we can extract the keywords and 
compute the score as metas . This technique can be further 
improved by considering the keywords in the records. Hence in 
order to get more accurate scoring, we will use a common tf-idf 
technique [17] to analyze the sampled data sources. We consider 
the geospatial objects of a data source in relational table format as 
a document and the measurement of tf-idf on top of this document 
gives us a score tables for each table ti corresponding to di as 
follows. 

∑
∈

=
pwww

itable n
Ntfts

..
2

1

log.)( , 

where tf is the frequency of word w in  di, N is the number of 
documents, and n is the number of documents where word w 
appears at least once. 

Next, we compute the score at the record level. For a given 
keyword w, the score assigned to a record is based on the 
following three steps: 

• Single-attribute IR-style relevance score function 
)( iatt as for each textual attribute ai under AND semantics. 

• A function )( jrecord rs that combines the single attribute score 

into a final score for the record jr and, 

• A function )( jfinal rs that takes into account other relevant 
tables. 

In the first step, we use the state-of-the-art IR definition [18] as a 
single-attribute scoring function as follows. 

df
N

avdl
dlss

tfas iatt
1ln.

.)1(

))ln(1ln(1)( +

+−

++
= , 

where, tf is the frequency of word w in ai, df is the number of 
tuples in ai’s relation with word w in this attribute, dl is the size of 
ai in characters, avdl is the average attribute-value size, N is the 
total number of tuples in ai’s relation, and s is a constant (usually 
0.2). We now combine the single attribute scores into one score 

)( jrecord rs for rj under the AND semantics. We use the following 
summation function. 

d1 d2 

d3 

q 

d4 

d1 d2 

d3 d4 

q 

q0 q1 

q3 q2 
Figure 2. (a) Before split and (b) after split. 
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∑
∈

=
ji ra

iattjrecord asrs )()(  

The final score for the record should be in comparison with other 
tables. Hence, we use )( itable ts as a weighting term to the record-
level score. It is given as follows. 

)().()( jrecorditablejfinal rstsrs =  
The final score of di matching all keywords in region q is given 
by, 

∑ ∑
∈ ∩

=

p i

i
www qd

jfinal
ic
d rss

..1

)( , 

where for each keyword w we sum the score of each sample 
record rj of di matching the query. 

4. TRAVERSAL POLICY 
In this section we discuss a virtual quad traversal algorithm and 
its heuristics.  

4.1 TRAVERSAL ALGORITHM 
The algorithm (Table 3) takes as input a set of data sources D and 
the query region q, and outputs an integrated dataset Dq. The 
while-loop checks if the difference between current time and start 
time reaches the user-defined time threshold t as a stopping 
condition. All the overlapping data sources Doverlap with q (root) 
are ranked using the function BestDatasource (Table 3), which 
uses the scoring function discussed in the previous sections and 
the best data source d

bestq for q is identified. The assumption here 
is that there exist sample objects collected from each data source, 
which allow us to compute the ranking function RankDatasource. 
Then the algorithm traverses q’s children using the function 
Traverse (Table 3). The best data source in each of q’s children is 
identified and then the quadrants are ranked using the function 
RankQuadrant. The ranked quadrants are pushed into a priority 
queue sorted according to their score, and its head is popped for 
subsequent traversal.  

The integrated dataset Dq is obtained using the algorithm 
presented in Table 4. The algorithm starts with the root. If the root 
is not expanded into quadrants, the function returns and outputs 
the data by doing a range query on the root’s BestDatasource. 
Otherwise, the function recursively checks each of the quadrant’s 
children and traverses up to the leaf quadrants. The algorithm now 
outputs the data by doing a range query on the respective leaf 
quadrant’s BestDatasource. We only consider leaf quadrants, 
because, the BestDatasource identified in a non-leaf quadrant 
may be subsequently replaced by other data sources in its 
children. We combine some of the quadrants at the leaf and non-
leaf levels, if they have the same BestDatasource, provided the 
combination still results in a bounding box. This is to minimize 
the range query operations. After the objects are obtained as a 
result of a range query, some of them, which do not satisfy the 
query keywords, are filtered. 

4.2 HEURISTICS FOR RANKING 
QUADRANTS 
A good traversal policy will improve the quality of integrated 
datasets quickly. The question is how to choose a quadrant for 
deeper traversal. Our heuristics to choose the best quadrant is 
based on the following observations: 

Table 3. Virtual quad traversal algorithm. 

Input: },...,,{ 21 ndddD = , query region q, and time threshold t. 
Output: Integrated dataset Dq 
Initialize: Priority Queue, φ=qp , best rank, br = 0.0 

While )( tStartTimeCurTime ≤−  
       qDDoverlap ∩=  

       ),( qDurceBestDatasoq overlap
d
best ←  

        )(qTravserse  
End While 

)(qatasetsIntegrateD  

),( qDurceBestDataso { 
      For Each Dindi  
            If ri bqdurceRankDataso ≥),(  
                  ),( qdurceRankDatasob ir =  

                  i
d
best dq =  

            End If 
      End For 
      Return d

bestq  
} 

)(qTravserse { 
       )(qnGetChildreQc ←  
        For Each ci Qinq  
             ioverlap qDD ∩=  

              ),( ioverlap
d
besti qDurceBestDatasoq ←  

        End For 
        )( cq qntRankQuadrap ←   

        )( qpheadTravserse ←  
} 

Table 4. Algorithm for unifying the datasets. 

)(qatasetsIntegrateD { 
         )(qnGetChildreQc ←  
         For each iq in cQ  
                 If iq has no children 
                          urceBestDatasoqd ii .←  
                         ),( ii qdRangeQueryOutPutOutPut +←  
                 Else 
                          )( iqatasetsIntegrateD  
                  End if 
         End For 
} 

• Since the user is interested in spatial coverage of the 
query region, the overall spatial coverage of the data 
sources in a quadrant should be one of the criteria. 

• The user is also interested in the information content 
and hence the overall information content of a quadrant 
should be another criterion. 
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• The third criterion is quality refinement. If there are 
more overlapping data sources in a quadrant, there is 
more scope for refinement. 

The heuristics we propose is a weighted combination of each of 
the above criteria. An example in Figure 3(a) illustrates that data 
sources falling in q3 have better spatial coverage than other 
quadrants. Figure 3(b) illustrates that q1 has more scope for 
refinement since its overlapping area is larger compared to the 
others. 
 

 
 
 
 
 
 
 
 
 
 
 
 
(a) (b) 

 
 
 
To compute the overall spatial coverage overalls  of a quadrant q, 
we consider the set of data sources },..,,{ 21 ndddD = overlapping 
with q. overalls is given by the union of the overlapping areas of 
all di with q over area of q. 

)(

)(
1

qArea

qdArea
s

n

i
i

overall

U
=

∩

=  

The overall refinement overallr is given by the total intersection 
area of all di overlapping with q over area of q. 

)(

)(
1

qArea

qdArea
r

n

i
i

overall

I
=

∩
=  

The overall information content overallic  q is given by the 
following expression. 

)(

)(

),(
)(),(

1 1

1

1

qArea

qdArea

qdInfo
ddAreaqdInfo

ic

n

i

n

i

n

ij
n

i
i

n

i
i

jii

overall

∑ ∑ ∑
∑

∑

= = =

=

=



















∩
∩−

= , 

where ),( qdInfo i computes the information content of di in q. The 
second expression in the above equation multiplies the total area 
by the average information content present in the overlapping area 
to discount the effect of redundant information content. The 
weighted sum of the above three equations gives the ranking 
function for q. 

overallioverallroveralls icwrwswqDntRankQuadra ...),( ++= , 
where irs wandww ,, are suitable user-defined weights.  

5. EXPERIMENTS 
In this section we present our experimental results. We first 
compare the effectiveness of our modified tf-idf technique on top 
of GIS datasets with the current metadata ranking mechanism. 
Later we show experiments that compare our heuristics with other 
naïve techniques. We first describe the settings of our experiment 
and the datasets we used.  

We first used school datasets with point geometry available from 
the ESRI Data Catalog. There were two different school datasets, 
one containing information about schools in the USA and the 
other containing information mixed with other geographic 
landmark features such as churches and hospitals. A rough 
content analysis of these two datasets led to the conclusion that 
there were a lot of different kinds of information, and one dataset 
contained more schools than the other. We restricted our analysis 
to mainly the region displayed in Figure 4, which consisted of the 
states of New York, Pennsylvania, and New Jersey. We clipped 
the datasets to match the above regions. The intuition for selecting 
three adjacent states as analysis regions is due to the fact that the 
query region may span multiple jurisdictions. A disaster occurring 
at the border of these states would require datasets to be 
integrated from different sources such as local, county, state, and 
federal levels. We also obtained datasets for these regions from 
the respective state GIS data clearinghouses and other sources. 
Finally, we got 35 school datasets from different sources that 
matched the analysis region. The maximum size of the datasets 
consisted of 25,000 records and the minimum consisted of 2,000 
records. The sizes of the datasets we used were a mix of large, 
medium, and small sizes. For all practical purposes, we 
considered these datasets as our remote data sources, even though 
all our analysis were done locally. For each dataset we took a 
random sample of 15-20% of its objects and all our analyses were 
performed on these sampled objects. 

  
 

 

5.1 Improved Dataset Ranking 
We conducted experiments to evaluate our improved tf-idf model 
on the GIS datasets. We indexed all the keywords present in the 
dataset samples. We used the tables function (see Section 3.4) to 
find the score for each dataset and ranked them according to the 
score. The results in comparison with metadata ranking using 

metas for query keywords “junior schools” are shown in 
Table 5. In order to avoid bias due to spatial coverage, we used 
five datasets that had roughly the same spatial coverage. It is 
shown that the metadata ranking hardly differentiated any of the 

q1 q0 

q3 q2 

q1 q0 

q3 q2 

Figure 3. Quadrants showing overall (a) spatial coverage 
and (b) overlap for refinement. 

Figure 4. Different overlapping datasets in the analysis region. 
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datasets. However, our table ranking differentiated the datasets 
quite well. 

Table 5. Metadata ranking vs. information ranking. 

Dataset Metadata 
Ranking 

Table 
Ranking 

D1 1 3 

D2 1 5 

D3 1 1 

D4 1 2 

D5 1 4 

5.2 Progressive Approximate Algorithm 
We implemented our progressive approximation algorithm and 
ran the algorithm on the school datasets for different query sizes. 
Our initial query range was 1000 miles by 1000 miles and the 
keywords used were “junior schools”. We uniformly 
placed range queries of the same size over the entire analysis 
region and the results were averaged over all the queries. The 
results are shown in Figure 5. The x-axis is the number of 
iterations, and the y-axis is the normalized weighted score. It 
shows the results of three techniques in selecting the nodes for 
traversal after each iteration. In the first technique, we used our 
virtual quad partition and applied our heuristics in selecting the 
nodes. In the second technique, we used a grid partition. In the 
grid partition, we divided the query region initially into 4, and 
then recursively divided into multiples of 4 such as 16, 64, 256, 
and so on. In the third technique, we used virtual quad and 
randomly selected a node to traverse. The results show that our 
heuristics works superior in comparison with the other two. The 
grid method performs slightly better than the random method. 
This is because the grid based method behaves like a breadth first 
search and gets an overall gain by not traversing any deeper 
partition. This experiment clearly shows that our heuristics always 
picked a node that can potentially maximize the score. 
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The proof of Theorem 1 (see Section 3.3) can also be seen from 
Figure 5. As we went deeper into spatial regions (more the 
iterations, deeper the analysis is), the quality measured as 
weighted score also increased.  

We plotted and compared the time taken and the number of nodes 
processed by the three methods. The results are shown in Figure 

6. The grid technique processed more nodes compared to the 
virtual quad method and the random method. However, the virtual 
quad method achieved a very high score even at the initial stages. 
The random or grid method processed more nodes, and the virtual 
quad method achieved a quite significant score. The previous 
graph shows that it took around 80 iterations for the heuristic 
technique to achieve the highest score for which the time 
corresponds to about 5 seconds. It should be noted that these 
different techniques pick nodes that are different in size during 
the traversal stage. It is interesting to note that the difference in 
iterations among the three methods is negligible for this time, but 
their scores vary widely. We varied the query size and observed 
similar effects with respect to graphs shown in Figures 5 and 6.  
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6. RELATED WORK 
GIS dataset ranking has been conventionally based on metadata 
[3, 11]. A multi-dimensional metadata ranking system for 
metadata documents based on thematic, spatial and temporal 
characteristics of datasets is proposed in [11]. In [3] this idea is 
improved by considering additional factors such as spatial 
hierarchy and spatial neighborhood of datasets. It also provided 
ontological framework for improving user interactivity. Ontology 
helps in better retrieval of datasets as opposed to traditional 
keyword matching, since different users use different 
terminologies for specifying the same theme during their search. 
In this paper, we improve their approaches by ranking datasets 
based on keywords present at the data level (i.e., relational table). 
Keyword-based search on relational tables has been proposed by a 
number of projects such as in DBXplorer and DISCOVER [1,2]. 
Their main idea is an IR-style method of retrieving rows matching 
user specified keywords from different tables without user 
knowing the schema of the table. Our approach also uses similar 
techniques, but focuses more on integrating data sets.  

One perspective of GIS data integration is to automatically 
conflate heterogeneous datasets such as imagery, maps, and 
vector data [5, 6]. The idea is to overlay non-geo-referenced aerial 
images on geo-referenced vectors or maps, by automatically 
generating control-pairs using image processing techniques. 
Image datasets carry better visual information and vector datasets 
carry better attribute information. The combination provides a 
powerful information enhancement for analysts. However, this 

Figure 5. Comparison of iteration versus score. 

Figure 6. Comparison of time versus number of iterations. 
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technique is different from our work and may not be useful for 
integrating quality-varying datasets. This paper does not deal with 
the alignment problem, but rather integrates multiple source 
datasets and provides users a single unified dataset with a high 
quality. Other important GIS data integration projects such as [4, 
5] develop geographic mediation systems for querying online 
heterogeneous GIS databases. Their work concentrates on how to 
process user queries using such mediation systems.  

7. CONCLUSIONS 
GIS data comes from different sources with varying quality and 
redundancy. There is an increasing need for analysts to obtain 
GIS data in a timely manner and in an integrated fashion without 
worrying about the sources and post-processing overhead. In this 
paper, we addressed this concern by proposing approximate 
methods by using space-partitioning techniques. The quality of 
result refines as we do deeper analysis. We showed experimental 
results of our techniques and compared it with other naïve 
methods.  

As future research directions, we can develop optimal space-
partitioning techniques for the local analysis based on some 
characteristics of the datasets. Another possible research direction 
is to incorporate ontology-based search on GIS datasets. Since 
datasets come from different sources, their representation and 
meaning of data differ widely. Hence ontology becomes critical 
for retrieving relevant data for analysts. It will be interesting to 
investigate different sampling techniques that can closely 
represent a data source in terms of spatial and keyword 
distribution. 
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